Monday, February 4, 2019

Bench Press in Pakistan

Previous studies have examined the kinematics of the bench press action (Madsen and McLaughlin, 1984), the effect of different chest press exercises (Welsch et al., 2005), unstable surfaces (Anderson and Behm, 2004), the impact of fatigue (Golas et al., 2016; van den Tillaar and Saeterbakken, 2013), as well as successful and unsuccessful attempts (van den Tillaar and Ettema, 2009), and different approaches (concentric vs counter movement (Tillaar and Ettema, 2013); isometric vs dynamic (Tillaar et al., 2012)) in bench press and chest press exercises with maximal and/or submaximal loads (Saeterbakken et al., 2011). However, there is limited evidence on the effects of different grip widths and inclinations of the bench on muscle activation patterns during execution. For example, athletes commonly adjust grip width with the aim of increasing the specificity of muscle activation. However, evidence supporting this as an effective strategy is not conclusive. Increasing the grip width to 200% of the biacromial distance resulted in greater pectoralis major (PM) (Barnett et al., 1995; Clemons and Aaron, 1997; Lehman, 2005), but lower anterior deltoid (AD) (Barnett et al., 1995) and triceps brachii (TB) activation compared with biacromial grip width (Barnett et al., 1995; Lehman, 2005; Maszczyk et al., 2016). In addition, increased biceps brachii (BB) activation has been demonstrated for a wide compared to a narrow grip (Lehman, 2005).
Bench Press in Pakistan
Varying the bench position (inclined and declined) has been shown to bias activation in either the sternal or clavicular portion of the PM (Barnett et al., 1995; Glass and Armstrong, 1997; Lauver et al., 2016; Trebs et al., 2010). Increased activation of the clavicular part of the PM has been demonstrated on an inclined bench (Trebs et al., 2010), with reduced activation of sternocostal fibers of the PM compared with the flat bench position (Barnett et al., 1995; Trebs et al., 2010). Barnett et al. (2015) demonstrated a similar pattern of increased activation of the sternocostal PM, but only an increase of the clavicular PM at the inclined compared with declined bench position. In contrast, Glass and Armstrong (1997) observed a similar increase in clavicular activation, with a greater increase in sternocostal PM activation in the declined position compared with an inclined bench. The inconclusive evidence from aforementioned studies could be the result of different inclined and declined bench positions (greater position of inclination compared with the position of decline) or that only positions of inclination were assessed (Barnett et al., 1995; Glass and Armstrong, 1997; Lauver et al., 2016; Trebs et al., 2010). Previous bench press studies were also limited by having examined recreational or strength-trained participants rather than competitive bench press athletes, testing muscle activation patterns at non-fatiguing, submaximal loads, and applying the criterion of absolute rather than relative intensity when comparing different variations of the bench press action (Barnett et al., 1995; Clemons and Aaron, 1997; Glass and Armstrong, 1997; Lauver et al., 2016; Trebs et al., 2010).